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This study considers the development and assessment of a flux-corrected transport (FCT)
algorithm for simulating high-speed flows on structured overlapping grids. This class of
algorithm shows promise for solving some difficult highly-nonlinear problems where
robustness and control of certain features, such as maintaining positive densities, is impor-
tant. Complex, possibly moving, geometry is treated through the use of structured overlap-
ping grids. Adaptive mesh refinement (AMR) is employed to ensure sharp resolution of
discontinuities in an efficient manner. Improvements to the FCT algorithm are proposed
for the treatment of strong rarefaction waves as well as rarefaction waves containing a
sonic point. Simulation results are obtained for a set of test problems and the convergence
characteristics are demonstrated and compared to a high-resolution Godunov method. The
problems considered are an isolated shock, an isolated contact, a modified Sod shock tube
problem, a two-shock Riemann problem, the Shu–Osher test problem, shock impingement
on single cylinder, and irregular Mach reflection of a strong shock striking an inclined
plane.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Many physical systems are well described mathematically by systems of conservation laws. Typical examples might in-
clude fluid flow around a body, condensed phase explosives, astrophysical phenomenon, or high energy density physics
applications. A large number of such systems have the property that discontinuous solutions can arise in finite time even
from smooth initial data. These discontinuities can be of a linear (e.g. contact wave) or nonlinear form (e.g. shock wave).
Numerical methods need to balance the often competing requirements of accurately approximating these two types of dis-
continuities while at the same time requiring higher order accuracy in smooth regions of the solution. This balance has been
one of the primary drivers behind the development of modern simulation tools. Methods striking such a balance are often
referred to as high-resolution methods and they require the use of limiters (switches) that choose between a number of dif-
ferent numerical stencils. For some flow regimes, this type of limiting has been found to be essential to obtain robust
schemes. Many, if not most, of the high-resolution techniques have their roots in the 1970s with ideas originally developed
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by Boris and Book in connection with flux-corrected transport (FCT) [1–3]. In the intervening years, FCT has been applied to a
wide range of challenging applications, for examples see [4–6], however the underlying mathematical developments have
not been as extensive as for other modern high-resolution techniques such as WENO [7,8], ENO [9–11], and high-resolution
Godunov techniques [12–14]. Recently however, the developments of Kuzmin et al. [6] towards algebraic flux-correction as
well as implicit methods have produced a renewed interest in FCT as a useful numerical method for many applications.

The scope of our current study is in the evaluation of FCT type methods for compressible flow simulations in the context
of overlapping grids which are used to represent geometric complexities as well as ensure mesh regularity [15–18]. The
overlapping grid method is quite general and can be used to generate computational meshes for complex geometries
[19–21] without the use of unstructured meshes, cut cells for embedded boundaries, or overly contorted globally mapped
grids. To our knowledge the FCT method has not been used with this type of infrastructure and one focus of the current study
is to evaluate its usefulness in that context. In addition, we present a detailed comparison with a high-resolution Godunov
method in order to provide a significant comparison with a more extensively characterized technique.

This paper first examines implementation details for structured overlapping grids. A series of test problems demonstrates
the properties of the method for practical simulations and compares the results with those from a high-resolution Godunov
method. Reference to the results presented in other studies such as [22,23] gives a good understanding of the relative merits
of these various high-resolution shock capturing schemes. This comparison is particularly useful for cases where Riemann
solution based strategies are not viable because of the complexities of the governing equations. Such is the case for some
relativistic flows, for example, and the FCT method may be attractive in this context provided an appropriate low order
method can be devised without resort to Riemann solutions. As shown in [24], FCT can also be useful for problems with ex-
treme jumps in density and pressure where traditional high-resolution methods may fail due to unphysical states such as
negative densities. It should be noted that FCT–FEM methods are currently being used to effectively solve difficult problems
in complex geometry using unstructured meshes [6]. In this finite element context, there is a need to solve problems with
strong shocks and other discontinuities, but there are very few continuous finite element counterparts to high-resolution
finite-volume and finite-difference methods. It is thus important to understand the relative merits of FCT and other high-res-
olution schemes in a framework where a valid comparison can be made.

The remainder of the paper is structured as follows. In Section 2 the governing equations are presented. In Section 3 the
FCT algorithm is presented and the development for structured overlapping grids is summarized. This section also presents a
brief discussion of two open issues with the traditional FCT algorithm; that of performance when either strong or sonic rar-
efactions are present in the flow. The poor performance of the standard method for these problems is demonstrated and an
improvement of the algorithm is proposed and evaluated. Section 4 presents numerical results for the FCT method and pro-
vides a comparison to a high-resolution Godunov method. Some qualitative remarks concerning computational cost compar-
isons between the FCT and Godunov methods are presented in Section 5 and concluding remarks are given in Section 6.

2. Governing equations

In this paper we consider the flow of an inviscid compressible gas and assume that in two dimensions the density q,
velocities ðu1; u2Þ, pressure p, and total energy E satisfy the system of conservation laws
@

@t
uþ @

@x1
f1ðuÞ þ

@

@x2
f2ðuÞ ¼ 0; ð1Þ
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q
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System (1) defines the conservation of mass, momenta, and total energy for the gas and is recognized as the well known
compressible Euler equations in two space dimensions. In this formulation, the total energy is given by
E ¼ qeþ 1
2
q u2

1 þ u2
2

� �
;

where e ¼ eðq; pÞ is the specific internal energy, which is specified by an equation of state. This paper assumes an ideal equa-
tion of state, namely
e ¼ p
qðc� 1Þ ð2Þ
where c ¼ cp

cv
is the ratio of (constant) specific heats with cp the specific heat at constant pressure and cv the specific heat at

constant volume. The Euler Eq. (1) are assumed to have been non-dimensionalized with suitable reference quantities and all
results are presented in dimensionless units.
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3. Flux-corrected transport algorithm

This section describes the FCT method as used in this paper including the extensions and modifications we have made to
the classic FCT algorithm. This implementation includes a DeVore type pre-limiter in lieu of Zalesak’s flux pre-constraint,
removal of artificial diffusion prior to the FCT flux limiter, a Jameson style artificial viscosity, a sonic fix for entropy violating
rarefaction waves, and the extension of the FCT algorithm to overlapping grids. For clarity, the improvements for treating
sonic points and very strong rarefactions are left to the end of the section.

3.1. Overlapping grids and AMR

We consider the governing Eq. (1) and proceed with a description of the FCT method in a two-dimensional overlapping
grid framework. To this end, we assume the flow domain is given by X and is discretized using an overlapping grid G. The
overlapping grid consists of a set of component grids fGig; i ¼ 1; . . . ;N g , that cover X and overlap where they meet. Each
component grid covers a sub-domain Xi. Grid points are tagged as discretization points where the governing equations are
applied, ghost points used for the application of boundary conditions, interpolation points where solution values are com-
municated between grids, or unused points where no computation is performed which are cut out through the mesh gen-
eration procedure. The FCT stencil is 7-points wide requiring three layers of data at interpolation and physical boundaries.
At interpolation boundaries, the 7-point stencil would normally require three layers of interpolation points. Although we
can generate such grids, in practice we usually construct a grid with a single layer of interpolation points and obtain val-
ues at the two additional layers through extrapolation. At physical boundaries, values on the boundary and three layers of
ghost points are obtained through application of the physical boundary conditions, derived compatibility conditions, and
extrapolation following the approach described in [16,17]. Note that the dependence of the solution on this final extrap-
olated layer is extremely weak as it can only affect whether the chosen update at the boundary is first or second-order
accurate (i.e. it is used only in the determination of the a in (8) below). For more details concerning general overlapping
grid methods, including application of boundary conditions, see [15–17,25]. Adaptive mesh refinement (AMR) is used in
regions of the flow where the solution changes rapidly, such as near shocks and contact surfaces. We employ a block-
structured AMR approach following that described originally in [26] and using modifications for overlapping grids as pre-
sented in [16–18].

3.2. FCT Discretization on a mapped grid

Each component grid, including base-level grids and any refined grids, is defined by a mapping from the unit square in
computational space ðr1; r2Þ to physical space ðx1; x2Þ. In computational space, Eq. (1) becomes
@
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uþ 1

J
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F1ðuÞ þ
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F2ðuÞ ¼ 0; ð3Þ
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� �
and
J ¼ @ðx1; x2Þ
@ðr1; r2Þ

����
����:
The metrics of the mapping, @x1=@r2; @x2=@r2, etc., and the Jacobian are considered to be known for each component grid at
the time of computation and can be generated analytically or approximated.

Discretization of (3) is performed using a uniform grid ðr1;i; r2; jÞ with grid spacing ðDr1;Dr2Þ. The FCT method is generally
considered a two-step process proceeding first with a low order update and finishing with the high-resolution FCT correc-
tion. We begin with the formulation of the low order solution update
utd;n
i; j ¼ un

i; j �
Dt

Ji; j Dr1
Dþr1 Flow;n

1i�1=2; j
� Dt

Ji; j Dr2
Dþr2 Flow;n

2i; j�1=2
ð4Þ
where Dþr1 and Dþr2 are the undivided forward difference approximations in the r1 and r2 directions of index space, respec-
tively. The ‘‘td” notation is consistent with [1–3,27] and denotes ‘‘transported and diffused”. For this work the HLL low order
flux [12,14] is used and for curvilinear geometries is given by
Flow;n
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¼

Fn
1i; j
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where
s� ¼min vn
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cn
i; j is the sound speed in a given cell, and vn

i; j is the component of the velocity normal to the cell face. The fluxes across other
cell boundaries take similar forms.

It should be noted that in [28,6], Zalesak suggests the use of the Rusanov flux for the low order method. This is a sym-
metrized version of the HLL flux resulting in further diffusion than the original HLL flux. However, the Rusanov flux as pre-
sented in [28,6] is slightly flawed in that the selected wave speed is not sufficient to encompass the full Riemann solution for
all cases. A more general Rusanov flux is
Flow;n
1iþ1=2; j

¼ 1
2
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1iþ1; j
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1i; j

� �
�max kn
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Dþr1 un
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h i
; ð6Þ
where kn
i; j is the largest eigenvalue (in magnitude) of the Jacobian matrix @

@u F1 at a cell ði; jÞ and time tn. The difference be-

tween (6) and the equation presented in [28,6] is the use of max kn
iþ1; j

��� ���; kn
i; j

��� ���� �
rather than 1=2 kn

iþ1; j

��� ���þ kn
i; j

��� ���� �
. In this work,

the HLL flux is used but we have found that the Rusanov flux (6) works nearly as well and is less expensive. As presented,
both of these approximate fluxes require knowledge of the eigenvalues of the Jacobian matrix. If this information were not
known, a Lax–Friedrichs type flux could in principle be used instead.

The second step of the FCT algorithm requires an ‘‘anti-diffusive” flux which is defined as the difference between a high-
order flux and the low order one. In the r1 direction of index space for example, this is
FAD;n
1i�1=2; j

¼ Fhigh;n
1i�1=2; j

� Flow;n
1i�1=2; j

: ð7Þ
The high-order flux is typically chosen to be some high-order centered flux and for this work the centered second-order flux
Fhigh;n
1iþ1=2; j

¼ 1
2

Fn
1i; j
þ Fn

1iþ1; j

� �

is chosen. The final sub-step update is now defined as
unew
i; j ¼ utd;n

i; j �
Dt

Ji; j Dr1
Dþr1 an

i�1=2; j � FAD;n
1i�1=2; j

� �
� Dt

Ji; j Dr2
Dþr2 an

i; j�1=2 � FAD;n
2i; j�1=2

� �
; ð8Þ
where � indicates component-wise multiplication. The vector of a’s are chosen using the FCT algorithm as described below
and represent the proportion of anti-diffusive flux at each cell face that is used in the final update. Our choice of notation
facilitates the use of the FCT algorithm in a method of lines type approach. By defining
@

@t
un

i; j ¼
unew

i; j � un
i; j

Dt
ð9Þ
we obtain an updated solution unþ1
i; j using any ordinary differential equation (ODE) integrator we choose. Choices for ODE

integrators might include Runge–Kutta methods, Adams methods, or others. For this work, we use an explicit Adams predic-
tor-corrector method of second-order to match the spatial algorithm. Detail concerning the implementation of these time
integrators can be found for example in [29,25].

Consider the determination of an
iþ1=2; j. FCT seeks to enforce solution monotonicity through the choice of a, but the property

of monotonicity is valid only for characteristic variables [30]. For the nonlinear Euler equations, conversion to characteristic
variables requires both a linearization and an eigen-decomposition of the linearized problem. As such, we linearize about the
arithmetic average �u ¼ 1

2 utd;n
i; j þ utd;n

iþ1; j

� �
. More sophisticated choices, such as the Roe average [14], could be made but in our

experience these make little difference in the eventual computed solutions. From this state, the linearized eigen-decompo-
sition T�1KT ¼ A ¼ @

@u F1ð�uÞ is found where we have dropped the sub- and superscripts to simplify the exposition. Whenever
multiplication by T is performed to achieve characteristic quantities it should be understood that this implies linearization
about a particular face, in this case ðiþ 1=2; jÞ. For two dimensions, a large number of characteristic transformations must be
performed (in three dimensions the number is even larger) and this constitutes one of the most expensive parts of the FCT
method.

In [4], DeVore indicates that the scheme of Zalesak does not preserve monotonicity in two dimensions and suggests lim-
iting the fluxes using the original Boris/Book limiter [1,2] in each direction prior to their input to the multi-dimensional lim-
iter. This is straight forward to and we demonstrate it for FAD;n

1iþ1=2; j� �	 


F̂AD;n

1iþ1=2; j
¼ s�max 0;min TFAD;n

1iþ1=2; j

��� ���; s� Jiþ1=2; j Dr1

Dt
Dþr1 Tutd;n

iþ1=2; j; s�
Jiþ1=2; j Dr1

Dt
Dþr1 Tutd;n

i�1=2; j ;
where s ¼ sign TFAD;n
1iþ1=2; j

� �
and the ‘‘hat” notation indicates that the anti-diffusive flux has been pre-limited. The other F̂ fluxes

are obtained through similar formulas.
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To complete the FCT algorithm, define the local maximum and minimum characteristic values as
wmax
k ¼max Tutd;n

iþk�1; j;Tutd;n
iþk; j;Tutd;n

iþkþ1; j;Tutd;n
iþk; j�1; Tutd;n

iþk; jþ1

� �
;

wmin
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iþk; j; Tutd;n

iþkþ1; j;Tutd;n
iþk; j�1;Tutd;n

iþk; jþ1

� �
;

ð10Þ
where k ¼ 0;1 and the extrema are taken component-wise. The actual influx into the cells on either side of the cell face
which would result from the AD fluxes is computed for example as
Ik ¼
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and the maximum permissible influx such that the characteristic bounds from (10) are not violated, indicated by the tilde, is
for example
~Ik ¼
1
Dt

wmax
k � Tutd;n

iþk; j

h i
: ð12Þ
Notice in (11) that the influx into the cells from both direction of index space are considered simultaneously. This follows
from [27] and reflects the fully multi-dimensional nature of this limiter as opposed to a limiter which is split along dimen-
sional lines. Component-wise ratios of permissible to actual fluxes are then defined for the two cells as
Rþk ¼min
~Ik

Ik
;1

 !
: ð13Þ
The quantities R�k , which represent the ratio of actual AD flux leaving the cell to the maximum flux permitted to leave the cell
without violation of the bounds in (10), are defined using similar reasoning. Setting
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k
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; ð15Þ
we define
R�k ¼min
~Ok

Ok
;1

 !
: ð16Þ
By choosing the most restrictive of these R values, the bounds from (10) are not violated. Thus we define
b ¼
minðRþ0 ;R

�
1 Þ when Ji; jF̂

AD;n
1iþ1=2; j

< 0

minðRþ1 ;R
�
0 Þ when Ji; jF̂

AD;n
1iþ1=2; j

P 0:

8<
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The final values for an
iþ1=2; j are found through component-wise inversion of the formula
an
iþ1=2; j � FAD;n

1iþ1=2; j
¼ T�1

b� F̂AD;n
1iþ1=2; j

� �
: ð18Þ
It is important to note that monotonicity of the linearized characteristic variables does not imply monotonicity of the con-
served variables. Thus the final updated solution could result in a negative density, imaginary sound speed, or negative pres-
sure. Such events do occur in the simulations we present and must be treated in a rational and reasonable way. Zalesak
suggests in [27,6] that a fail-safe limiter be employed and we take a similar approach here. At each time, if the values at
a given cell ði; jÞ violate physically realistic bounds after advancement to unew

i; j in (8), then no portion of the anti-diffusive flux
is allowed at the boundaries of that cell. For such cells,
an
iþ1=2; j ¼ an

i�1=2; j ¼ an
i; jþ1=2 ¼ an

i; j�1=2 ¼ 0 ð19Þ
is enforced and the method becomes fully first order in a local region. In our experience, this fail-safe mechanism is critical
for the success of the FCT algorithm. It should also be noted that after setting an

i�1=2; j�1=2 ¼ 0 in one cell, the problem (negative
density etc.) may then appear in a neighbouring cell. In principle the result could be a cascade across all cells. These cascades
are rare and do not occur for any of the simulations presented in this work.

This completes the description of the FCT algorithm itself but there is another aspect which must be addressed. In [27] it
is recognized that some amount of higher order dissipation must be included to remove high frequency noise generated by
the FCT procedure. In that work the high-order dissipation was added to the AD flux prior to flux correction. In our studies we
found this to be unsatisfactory because the effect of the high-order dissipation is reduced by the FCT limiters. The result is
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unacceptable levels of numerical noise in the computed solutions. Therefore we add dissipation independently after the FCT
step. To this end we implement a second-order dissipation near shocks [13,16] to treat undamped transverse instabilities as
well as a fourth-order Jameson style dissipation away from shocks [31,32,25]. We switch the fourth-order dissipation on or
off based on density variations to ensure that it is not active near shocks or contacts. One final note is that the computed
solution will not violate the prescribed bounds only for CFL numbers less than 1=2 and so all FCT simulation results pre-
sented in this paper set the CFL number to be 0:4.

3.3. Sonic fix

As is the case for some other methods, such as Godunov’s method with an approximate Roe Riemann solver [14], the FCT
method can exhibit poor behavior in rarefaction waves at points where the flow speed is equal to the sound speed (sonic
points). The problem is illustrated by the solution to a modified version of Sod’s shock tube problem [33,14] with left and
right states given by ðq;u1;u2; pÞL ¼ ð1:0;0:75;0:0;1:0Þ and ðq;u1;u2; pÞR ¼ ð0:125;0:75;0:0;0:1Þ, and with c ¼ 1:4. We com-
pute approximations to the solution of this Riemann problem using the grid Lð½�1;1�;100Þ where
Fig. 1.
solution
problem
figure l
Lð½xa; xb�;NÞ ¼ fxi j xi ¼ xa þ iDx;Dx ¼ ðxb � xaÞ=N; i ¼ 0;1; . . . ;Ng; ð20Þ
with the initial discontinuity located at x ¼ �0:4. Fig. 1 shows the results produced by the FCT method with and without our
sonic fix. The problematic behavior of the method at the sonic point is clearly visible in the form of a rarefaction shock which
represents an entropy violating weak solution.

The existence of rarefaction shocks in numerical approximations is typically the result of insufficient numerical diffusion.
For FCT this is caused by the use of high-order centered fluxes. This is in contrast to Roe’s method where the linearization
causes the problem even at first order. The FCT method considered in this paper uses the HLL flux (known to be devoid of
rarefaction shocks [14]) for the low order update. To eliminate rarefaction shocks for FCT approximations, we rely on this fact
and simply set the value for a in (8) to zero for cases where sonic rarefactions are present. This choice has implications on
solution accuracy, but because sonic points exist in isolation, the impact is negligible as will be demonstrated in Section 4.

The anti-diffusive fluxes in (8) have associated left and right states, call these uL and uR, respectively. For instance con-
sider FAD;n

1iþ1=2; j
with uL ¼ utd;n

i; j and uR ¼ utd;n
iþ1; j. These states can be viewed as left and right states of a one dimensional Riemann

problem in the direction normal to the cell face. Define the normal velocities as vn;L ¼ ðn1;n2Þ � ðu1L;u2LÞT and
vn;R ¼ ðn1;n2Þ � ðu1R;u2RÞT where ðn1;n2Þ is the unit normal to the cell face. Following the nomenclature in [14], we define
the star state as the center solution to this Riemann problem (i.e. the solution between the Cþ and C� characteristics). As
in [14], p� and v�n can be approximated by
p� ¼ max 0; cL þ cR �
c� 1

2
vn;R � vn;Lð Þ

� �
cL

pz
L
þ cR

pz
R

� ��1
 !" #1=z

ð21Þ
and
v�n ¼ vn;L þ
2

c� 1
cL � c�L
� �

; ð22Þ
where c�L ¼ cLðp�=pLÞ
z
; c�R ¼ cRðp�=pRÞ

z
; z ¼ ðc� 1Þ=ð2cÞ; cL is the left sound speed, and cR is the right sound speed. These par-

ticular star states arise from the approximation of the Riemann solution by the so-called two rarefaction Riemann solver and
are approximations to the true star state. Note that other choices for the star states are also acceptable. Our sonic fix defines a
new value for a by
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an
iþ1=2; j  

0 if vn;L � cL 6 0 and v�n � c�L P 0
0 if v�n þ c�R 6 0 and vn;R þ cR P 0

an
iþ1=2; j else:

8><
>:
The effect of these choices is to return the solver to first order accuracy near sonic points in rarefaction waves. Fig. 1 shows
the solution to the modified Sod’s problem employing this sonic fix where it is seen that the poor behavior has been effec-
tively eliminated apart from a small kink at the sonic point. It should be noted that the particular sonic fix demonstrated here
relies on an approximate solution to the Riemann problem. For cases where this solution is not known, this fix is not appli-
cable and sonic rarefactions must be identified in another way. For example, one might consider applying the fix wherever
the flow transitions from super- to sub-sonic flow across a cell boundary.

3.4. Strong rarefactions

In addition to the poor behavior for sonic rarefaction waves, the traditional FCT algorithm runs into difficulties for strong
rarefaction waves where the difference in velocities at which the gas is being pulled apart differ by more than the local sound
speed. This is a very difficult problem for many methods because a near vacuum state is reached and failure can occur as a
result of negative densities or pressures [5]. Consider the solution to a Riemann problem with left and right states
ðq;u1;u2; pÞL ¼ ð1:0;�2:0;0:0;0:4Þ and ðq; u1; u2; pÞL ¼ ð1:0;2:0;0:0; 0:4Þ, respectively.

Fig. 2 shows the density and velocity as computed by the FCT algorithm for this case both with and without our fix. The
FCT solution without any fix demonstrates oscillations in velocity close to the near vacuum state (near the origin). In order to
remove this behavior a simple fix is employed which sets
an
iþ1=2; j ¼ 0 if p� < minðpL;pRÞ and jvnL � vnR jP maxðcl; crÞ:
This causes the first order scheme to be used when strong rarefaction waves are present. The results shown in Fig. 2 dem-
onstrate that the velocity from the fixed scheme is monotonic near the origin. These results are comparable to the results of
Tóth in [5] but further improvements should be investigated.

3.5. A note concerning monotonicity

The original FCT scheme of Boris and Book applied to 1D linear advection problems is provably monotone. However, the
extension by Zalesak to higher-dimensions do not result in a monotone scheme, a fact that has apparently not been dis-
cussed in the literature. We now present a simple example to illustrate this fact. Consider linear advection with unit advec-
tion velocity,
@

@t
qþ @

@x1
q ¼ 0:
We use the low order flux given by f low;n
iþ1=2 ¼ qn

i , and the second-order centered flux given by fhigh;n
iþ1=2 ¼ 1

2 qn
i þ qn

iþ1

� �
. At time le-

vel tn let the approximate solution be given by
qn
�3 ¼ 4:5; qn

�2 ¼ 4; qn
�1 ¼ 3:5; qn

0 ¼ 3; qn
1 ¼ 3; qn

2 ¼ 2; qn
3 ¼ 1; qn

4 ¼ 0:
Set the grid spacing as Dx1 ¼ 1 and the temporal spacing as Dt ¼ 0:25. The FCT algorithm, as outlined by Zalesak [27,28],
produces the following values for a
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an
�1=2 ¼ 1; an

1=2 ¼ 1; an
3=2 ¼ 1:
By using the forward Euler time integrator (i.e. qnþ1
i ¼ qnew

i ), the FCT solution after a single step results in the values
qnþ1
0 ¼ 3:0625; qnþ1

1 ¼ 3:125:
The solution at time tn was monotonically decreasing left to right while the solution for these two cells at time tnþ1 is
monotonically increasing left to right and so the violation of monotonicity is demonstrated. Many authors suggest the
use of a pre-limiter, but for this case the pre-limiter suggested by Zalesak [27] and Kuzmin [6] has no effect as can be easily
verified. The pre-limiter of DeVore [4], which we have adopted here, does remedy this particular problem, but a proof of
monotonicity for arbitrary high-order fluxes is not known.

4. Numerical results

We now present simulation results using the FCT algorithm described in Section 3. The discussion centers on studying the
robustness and accuracy of the overall numerical approach and comparing the results to those from the high-resolution
Godunov method in [16–18] which uses an approximate Roe Riemann solver [34] and the MinMod limiter [14]. Of course,
the comparisons presented here are only valid for these particular implementations of the FCT and Godnuov methods. There
are many variations to both algorithms which would change the specifics of the results. However, the present study provides
a reasonable baseline comparison of the relative merits of the two schemes. Furthermore, the hope is that given the results
from previous comparisons, for example in [22], one can place, in a general sense, high-resolution Godunov methods, WENO
methods, and FCT in relation to each other. In fact the tests we present were largely driven by the choice of tests presented in
[22] exactly for the reason that comparisons could be made.

Because the purpose of this section is to provide a comparison between methods as they might be used in practice, the set
of parameters used by each method is set to what we consider to be reasonable numbers. For the Godunov method we use
CFL = 0.9 and for FCT we use CFL = 0.4. The small choice for FCT is required, as noted in Section 3, to ensure the desired
bounds are not violated. For problems where AMR is used, the refinement criteria is the same for both schemes and is based
on a weighted sum of first and second un-divided differences of the solution (see [16] for details).

The expected second-order convergence rate for the FCT method for smooth flows has been established using the method
of analytic solutions [35]. This test was also performed for the Godunov method as in [18]. Here we consider the solution to
1D isolated contacts, isolated shocks, Sod’s shock tube problem, a two-shock Riemann problem, and the Shu–Osher test case.
The methods are then compared for the 2D problems of shock impingement on a cylinder and the irregular Mach reflection
of a strong shock on an inclined ramp.

4.1. Isolated contact and shock discontinuities

4.1.1. Contact wave
The contact wave is a traveling discontinuous jump where characteristics run parallel to the front. As such, error can accu-

mulate with the result that a nominally Pth order shock capturing scheme will generally converge at the rate of j ¼ P=ðP þ 1Þ
in the L1 sense [36–38]. There are some so-called compressively limited schemes which can achieve j ¼ 1 convergence
although such schemes often have other undesirable characteristics such as the artificial steepening of smooth solutions
[39,14]. The construction of the FCT method does not immediately indicate what the convergence rate should be.

The initial conditions for the contact wave consists of the left state ðq;u1;u2; pÞL ¼ ð0:1;1:0;0:0;1:0Þ and the right state
ðq;u1;u2; pÞR ¼ ð1:0;1:0;0:0;1:0Þ with the jump at x0 ¼ 0:25. We can construct a weak solution corresponding to a vanishing
viscosity solution, and we will call such solutions ‘‘exact” with the understanding that there may be many weak solutions.
The exact solution to this problem consists of a propagating discontinuity moving to the right with speed 1.0. The density
jumps through this discontinuity but the pressure and velocity remain constant. Simulations are performed on the grid de-
fined by Lð½0:0;1:0�;200mÞ where m is a measure of grid resolution (see Eq. (20)). A value of c ¼ 1:4, corresponding to a dia-
tomic ideal gas, is chosen.

A convergence study is performed at various numerical resolutions indicated by m with the comparisons taking place at
tf ¼ 0:5 using the discrete L1 norm. Results from this study are given in Table 1 where the convergence rate is computed from
ence results for the contact wave problem using second order Godunov and FCT approximations, indicated by ‘‘F” and ‘‘G” in the headings, respectively.
s in density at tf ¼ 0:5 are computed for grid resolutions determined by m. Estimated convergence rates j ¼ log2ðeqðmÞ=eqð2mÞÞ as well as a least
fit of the convergence rates over the entire refinement process ~j are shown. Note that errors for velocity and pressure are identically zero.

eqðmÞ F j eqðmÞ G j

1.06e�2 – 1.39e�2 –
6.64e�3 .67 8.78e�3 .66
4.18e�3 .67 5.55e�3 .66
2.63e�3 .67 3.51e�3 .66
.67 .66
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one resolution to the next as j ¼ log2ðeqðmÞ=eqð2mÞÞ as well as a least squares fit of the rates over the entire refinement pro-
cess which we label ~j. Here it is seen that both the FCT and Godunov methods attain the expected convergence rate of � 2=3
as measured by both j and ~j. We can also see that the FCT method captures the contact with slightly less error than the
Godunov method although the results for the Godunov method are sensitive to the choice of Riemann solver and limiter [38].

4.1.2. Shock wave
Consider a Mach 2 shock with c ¼ 1:4. The pre- and post-shock states are given by ðq;u1;u2; pÞL ¼ ð2:67;1:48;0:0;4:5Þ and

ðq;u1;u2; pÞR ¼ ð1:0;0:0;0:0;1:0Þ. For this nonlinear phenomenon, the characteristic curves enter into the discontinuity
which acts as a natural steepening mechanism. Computations are carried out on the unit interval x 2 ½0;1� using mesh
Lð½0:0;1:0�;200mÞwith m being a measure of grid resolution. The initial jump is placed at x0 ¼ 0:25 and integration is carried
out to tf ¼ 0:25 where L1 errors are computed. The results are presented in Table 2.

Both schemes have similar L1 errors and demonstrate the expected first order convergence with j � 1 and ~j � 1 for den-
sity, velocity and pressure. This implies that the number of cells for which there is Oð1Þ point-wise error is fixed which im-
plies that the shock does not continually smear as a function of time. Contrast this to the case of the contact in Section 4.1.1
where the captured discontinuity contains an increasing number of grid cells even as its overall width decreased.

4.2. Sod’s shock tube problem (modified)

For this example problem we investigate the behavior of the FCT and Godunov methods for a modified version of Sod’s
shock tube problem. This problem is designed to highlight the poor behavior of some numerical methods near sonic points in
rarefaction waves and was previously discussed in Section 3.3 where the sonic fix for the FCT method was described. A
description of sonic fixes for Godunov schemes can be found, for example, in [14]. The computational domain is again chosen
to be x 2 ½�1;1�, the initial jump is placed at x0 ¼ �0:4, and the governing Eq. (1) are integrated to tf ¼ 0:5. The computa-
tional grid for this study is given by Lð½�1:0;1:0�;100mÞ.

The exact density and pressure, as well as approximate results for m ¼ 1 for both the Godunov and FCT methods, are
shown in Fig. 3 which demonstrates the similarity of the two approximate solutions. This trend continues for all resolutions
but is more easily seen for this coarse simulation where m ¼ 1. Fig. 3 also shows that both methods seem to be handling the
sonic rarefaction. Quantitative convergence results are shown in Table 3 using the discrete L1 norm. These results indicate
that although both schemes are clearly converging to the exact solution, neither scheme is yet in the asymptotic range of
convergence where the L1 error of density will be dominated by the 2=3 convergence rate near the contact. Even so, both
Table 2
Convergence results for the shock wave problem using second order Godunov (G) and FCT (F) approximations. L1 errors in density, velocity and pressure are
shown at tf ¼ 0:25 for grid resolutions determined by m. Estimated convergence rates j ¼ log2ðeqðmÞ=eqð2mÞÞ as well as a least squares fits of the convergence
rates over the entire refinement process ~j are also shown.

m eqðmÞ F j eqðmÞ G j eu1 ðmÞ F j eu1 ðmÞ G j epðmÞ F j epðmÞ G j

1 8.38e�3 – 7.08e�3 – 5.59e�3 – 4.83e�3 – 1.44e�2 – 1.26e�2 –
2 3.94e�3 1.0 3.65e�3 .96 2.91e�3 .94 2.76e�3 .81 6.57e�3 1.1 6.35e�3 .99
4 2.08e�3 .92 1.82e�3 1.0 1.39e�3 1.1 1.22e�3 1.2 3.63e�3 .86 3.27e�3 .96
8 9.63e�4 1.1 9.15e�4 .99 7.13e�4 .96 6.72e�4 .86 1.66e�3 1.1 1.60e�3 1.0
~j 1.03 .99 1.00 .97 1.02 .99
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Fig. 3. Exact solution (black line) and numerical approximations with m ¼ 1 for Godunov’s method using Roe’s approximate Riemann solver (red marks)
and the FCT method (blue marks) for the modified Sod shock tube problem at tf ¼ 0:5. Shown here are the density (left) and the pressure (right). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Exact solution (black line) and approximations with m ¼ 1 for Godunov’s method using Roe approximate Riemann solver (red marks) and the FCT
method (blue marks) for the two-shock Riemann problem at tf ¼ 0:035. Shown here are the density (left) and the pressure (left). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Convergence results for the modified Sod shock tube problem. Discrete L1 error and associated convergence rates for the Godunov (G) and FCT (F) schemes at
selected resolutions associated with the choice of m. Apparently the mesh is of insufficient resolution for the methods to exhibit global convergence rates of 2=3
for the L1 norm of density which is dictated by the captured contact.

m eqðmÞ F j eqðmÞ G j eu1 ðmÞ F j eu1 ðmÞ G j epðmÞ F j epðmÞ G j

2 8.86e�3 – 9.44e�3 – 1.44e�2 – 1.44e�2 – 6.54e�3 – 6.32e�3 –
4 5.00e�3 .83 5.31e�3 .83 6.99e�3 1.0 7.51e�3 .94 3.21e�3 1.0 3.22e�3 .97
8 3.05e�3 .71 3.03e�3 .81 3.32e�3 1.1 4.08e�3 .88 1.54e�3 1.1 1.67e�3 .94
16 1.83e�3 .74 1.80e�3 .75 1.59e�3 1.1 2.42e�3 .75 7.24e�4 1.1 9.08e�4 .88
~j .76 .80 1.06 .86 1.06 .93
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schemes provide similar convergence behavior with the FCT yielding slightly higher convergence rates for the pressure and
velocity. See Fig. 4.

4.3. A two-shock Riemann problem

The last Riemann problem investigated in this work is commonly known as the two-shock problem. The exact solution to
this problem for c ¼ 1:4 has a M � 5:62 shock in the rightmost characteristic field, a M � 1:81 shock in the leftmost charac-
teristic field, and a contact wave separating the two. Left and right states are taken from [14] and given as
ðq;u1;u2; pÞL ¼ ð5:99242;19:5975;0:0;460:894Þ and ðq; u1; u2; pÞR ¼ ð5:99242;�6:19633;0:0;46:0950Þ The exact solution is
determined as in [30], and results in a nearly stationary shock for the leftmost characteristic field. The actual speed of the
left shock is S � 0:78, the velocity through the contact wave is u1 � 8:69, and the rightmost shock moves with speed
S � 12:25. The capturing of the nearly stationary shock proves to be one of the primary difficulties for this problem (see
[40,41] for details on slowly moving shocks). Shock capturing schemes also have difficulty representing the contact in this
problem and there is a need to accurately resolve that jump before a reasonable global approximation is achieved.

The solution for this problem is approximated for x 2 ½�1;1� using the mesh Lð½�1:0;1:0�;100mÞ and integration is carried
out to a final time of tf ¼ 0:035. Fig. 3 shows profiles of density and pressure for the exact solution at that time as well as the
numerical approximations for m ¼ 1. Qualitatively it is seen that the two schemes produce similar results, however, close
inspection revels the Godunov approximation to be slightly less oscillatory particularly in the pressure while the FCT approx-
imation shows a sharper capture of the contact wave. Table 4 shows quantitative convergence results for the two schemes
using the discrete L1 norm for the computation of the errors. This table shows that the Godunov approximations demonstrate
Table 4
Discrete L1 error and associated convergence rates for the two-shock problem using the Godunov (G) and FCT (F) schemes at selected resolutions associated
with the choice of m. Neither scheme is yet in the asymptotic range of convergence where the L1 errors in density will be dominated by the 2=3 convergence
rate at the contact.

m eqðmÞ F j eqðmÞ G j eu1 ðmÞ F j eu1 ðmÞ G j epðmÞ F j epðmÞ G j

2 4.48e�1 – 7.53e�1 – 1.10e�1 – 3.40e�1 – 8.74e�0 – 3.29e�1 –
4 2.58e�1 .80 4.08e�1 .88 7.15e�2 .62 1.41e�1 1.3 6.49e�0 .43 1.40e�1 1.23
8 1.51e�1 .77 2.26e�1 .85 2.48e�2 1.5 7.78e�2 .86 3.34e�0 .96 7.89e�0 .83
16 9.00e�2 .75 1.43e�1 .66 1.66e�2 .58 4.76e�2 .71 1.82e�0 .88 4.94e�0 .66
~j .77 .80 .91 .94 .75 .90
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somewhat higher convergence rates for all quantities, but that for the resolutions discussed here the FCT approximations
always give smaller actual errors. In fact for the pressure and velocity, the errors in the FCT approximations are more than
three times smaller than the Godunov approximations at coarse resolutions and still more than twice as small for the finest
mesh considered.

4.4. Shu–Osher problem

The final one-dimensional test case considered in this paper is a problem originally considered by Shu and Osher [7] and
subsequently by others [22,23]. This problem consists of a M ¼ 3 shock in air, c ¼ 1:4, traveling into unshocked air with sinu-
soidally perturbed density. As originally presented, the problem has a number of parameters and the specific values used
here are taken from [22]. The initial setup is
Fig. 5.
referen
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article.)
q ¼ 3:857143; u1 ¼ 2:629369; u2 ¼ 0; p ¼ 10:33333 for x1 < �4
q ¼ 1� � sinðkpxÞ; u1 ¼ 0; u2 ¼ 0; p ¼ 1 for x1 P �4;

ð23Þ
where the parameter values are � ¼ 0:2 and k ¼ 5. The approximate solution is computed for x 2 ½�5;5� using
Lð½�5:0;5:0�;200mÞ and integrated to a final time tf ¼ 1:8.

When interpreting results, it is useful to understand the Riemann structure of the solution when � ¼ 0. For this case we
can determine an exact solution and the waves present there give a good indication where structures in the more compli-
cated solution will arise. When � ¼ 0, the solution consists of a M ¼ 3 shock traveling with speed S � 3:55. The perturbed
problem, �– 0 and small, will have disturbances traveling along the other two characteristic fields with speeds S � 2:63
and S � 0:69. At t ¼ 1:8, the lead shock will have travelled to x1 � 2:39, the contact wave to x1 � 0:73 and the left acoustic
wave to x1 � �2:76. For small � it is expected that the exact solution will change character near these locations.

A reference solution, computed with m ¼ 128 up to t ¼ 1:8, can be seen, for example, in Fig. 5. For x < �2:76 the solution
is the unperturbed post-shock state. For x 2 ð�2:76; 0:73Þ the solution exhibits mild oscillations in all quantities. These oscil-
lations are the result of the passage of the left acoustic wave. For x 2 ð0:73;2:39Þ the solution exhibits high frequency oscil-
lations. Notice that for the computational resolution m, the high frequency oscillations in the density for x 2 ð0:73;2:39Þ
contain approximately 2m grid points per wavelength. The solution with m ¼ 128 uses a sufficiently fine grid to resolve
these oscillations as evidenced by the fact that further refinement does not change the character of the solution, and because
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Comparison of the numerical approximations with m ¼ 1 at t ¼ 1:8 for the Shu–Osher test problem. For all images the black line represents the
ce solution with m ¼ 128 while the red line (left) shows the Godunov approximation and the blue line (right) shows the FCT approximation. From
ottom are density and pressure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
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it results in approximately 256 cells per wavelength for x 2 ð0:73;2:39Þ. For x > 2:39 the solution returns to the initial up-
stream state. The locations where the solution changes behavior are, as expected, those mentioned above in the discussion of
the Riemann structure for � ¼ 0.

There is no known closed form solution to this problem and convergence results must be estimated through comparison
to more finely resolved solutions. Here we use a method similar to that presented in [42]. At a given point, xi, we assume the
solution at a given resolution differs from the exact solution by
Table 5
Converg
and (25

m

1
2
4
8
16
32

Fig. 6.
comput
ueðxiÞ � umðxiÞ � cðxiÞhj
m; ð24Þ
where ue is the exact solution, um the numerical approximation, cðxiÞ depends only on xi, j is the convergence rate and hm is
the grid spacing. Note that we have uniform grid spacing. From (24) one can compute
um1 ðxÞ � um2 ðxÞ
�� ���� ��

h
� cðxÞj jj jhjh

j
m1
� hj

m2
j ð25Þ
using a discrete norm. Numerical approximations at three resolutions and Eq. (25) can be combined to produce two equa-
tions which define the convergence rate j and the constant kcðxÞkh. The solution error can then be approximated as
euðmÞ ¼ kue � umkh � kcðxÞkhhj. When estimating the error and convergence rate for a given approximation with resolution
given by m, we use the three approximations um;u64 and u128. Table 5 shows the convergence results using the discrete L1

norm for both the FCT and Godunov schemes. From this table it is clear that the coarser resolutions do not approximate the
solution well at all, particularly for the density, and low rates of convergence are attained. Figs. 5 and 6 demonstrate this
graphically where the numerical approximations for m ¼ 1 are plotted on top of the reference solution. Fig. 5 shows the glo-
bal character of the solution and Fig. 6 shows a zoom of the density in the most oscillatory region.

For low resolutions, the high frequency oscillations are not well represented and both methods exhibit poor convergence
properties, particularly for the density as seen in Fig. 6. This is reflected by the convergence rates which are less than 1. At
some critical resolution however, both methods see a rise in convergence rates, tending to some value larger than 1. Once
this transition occurs, the high frequency oscillations begin to be well represented as shown in Figs. 7 and 8. This transition
to higher convergence rates happens at lower resolution for FCT, indicating that it has more resolving power than the
ence results for the Shu–Osher test problem using both the Godunov (G) and FCT (F) methods. Convergence rates and errors are computed with (24)
) using finely resolved simulations at m = 64 and m = 128.

eqðmÞ F j eqðmÞ G j eu1 ðmÞ F j eu1 ðmÞ G j epðmÞ F j epðmÞ G j

1.16e�0 .75 1.20e�0 .44 3.44e�1 1.1 3.02e�1 .94 2.34e�0 1.1 1.98e�0 .92
9.18e�1 .86 1.01e�0 .52 1.57e�1 1.1 1.55e�1 .94 1.08e�0 1.1 1.08e�0 .93
7.86e�1 1.1 8.64e�1 .67 6.35e�2 1.1 7.85e�2 .92 4.75e�1 1.1 5.67e�1 .94
5.98e�1 1.4 7.28e�1 .93 3.10e�2 1.1 4.22e�2 .94 2.23e�1 1.1 2.94e�1 .93
2.39e�1 1.4 5.00e�1 1.3 1.52e�2 1.2 2.35e�2 1.0 1.06e�1 1.2 1.70e�1 1.1
8.90e�2 1.4 2.19e�1 1.5 6.87e�3 1.4 1.20e�2 1.3 4.57e�2 1.3 8.38e�2 1.3
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Godunov method. For the highest resolutions demonstrated here, both approximations are reasonably representing all struc-
tures in the flow and their convergence rates become roughly equal. However, because the FCT method experienced the tran-
sition to higher convergence rates earlier in the refinement process, the errors at the highest resolutions are smaller than for
the Godunov approximations by nearly a factor of 2.

4.5. Shock impingement on stationary cylinder

The first two-dimensional test problem which we consider is the impingement of a M ¼ 2 shock on a rigid immovable
cylinder. The basic problem consists of a rigid cylinder of radius 0:5 placed in the larger domain ½�2;2� 	 ½�2;2�. A Mach

en
 x1d FCTig. 8.oom of density near the high frequency oscillations. Shown are the FCT and Godunov approximations withm¼16, and the reference solutionomputed by the Godunov method withm¼128.
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2 shock initially located at x1 ¼ �1:5 runs from left to right. The computational mesh is defined as the overlapping grid con-
structed from an annulus Aðð0;0Þ; ½0:5;1:0�;10m;80mÞ and a rectangle Rð½�2;2� 	 ½�2;2�;80m;80mÞ, where A and R are de-
fined as
Fig. 9.
additio
as discu
Rð½x1;a; x1;b� 	 ½x2;a; x2;b�;N1;N2Þ ¼ fðx1;a þ i1Dx1; x2;a þ i2Dx2Þ j Dxk ¼ ðxk;b � xk;aÞ=Nk; ik ¼ 0;1; . . . ;Nk; k ¼ 1;2g
and
Aððx1;c; x2;cÞ; ½ra; rb�;Nr ;NhÞ
¼ fðx1;c; x2;cÞ þ rir ðcosðhih Þ; sinðhih ÞÞ j rir ¼ ra þ irðrb � raÞ=Nr ; hih ¼ 2pih=Nh; ik ¼ 0;1; . . . ;Nk; k ¼ r; hg:
The boundary around the cylinder is defined as a slip wall (see [17]), the left boundary as an inflow, and the remaining
boundaries are given outflow conditions. Phenomena of interest are limited to those associated with the shock/cylinder
interaction. Provided that the simulation is not run too far in time, waves generated at the cylinder do not reach the exterior
boundaries and so the exterior boundary condition choice has little influence. Fig. 9 shows the computational mesh as well as
color contours of density for the initial conditions. Numerical values for the initial conditions in primitive quantities, corre-
sponding to a Mach 2 shock in air ðc ¼ 1:4Þ, were shown previously in Section 4.1.2.

The comparisons carried out in this paper use the resolution m ¼ 1 displayed in Fig. 9 for the coarse grid simulation.
Adaptive mesh refinement (AMR) is then used for successive resolutions. For this test of shock interaction with a single cyl-
inder, additional levels of AMR use a factor four refinement in each coordinate direction and so the four resolutions inves-
tigated have approximate grid spacings h � 0:05;0:0125;0:003125, and 0:00078125. Notice that because the initial condition
uses a perfect jump, there exists numerical artifacts along the c� characteristic and contact path. No effort is made to remove
these and their contribution may be seen throughout the simulations.

Fig. 10 shows the computed density using both methods for t ¼ 0:6, t ¼ 1:0, and t ¼ 1:4 as the incident shock reflects from
the cylinder boundary. Overall the results show remarkably good agreement although slight differences can be seen at
t ¼ 1:4 in the low density wake region of the cylinder. To give a better indication of what is happening, Fig. 11 shows the
AMR grid structure, numerical Schlieren images [43], and the estimated error in density at t ¼ 1:4. The computation of
the error estimate will be discussed below. The image of the AMR grids is perhaps the most informative because it demon-
strates the increased noise created by the FCT method. Numerical noise tends to flag cells for refinement by the AMR algo-
rithm and so a larger portion of the domain is covered by fine meshes for the FCT simulation. This type of noise, also
interpretable as staircases [6], is a common phenomenon in FCT simulations. There are ways to reduce the noise, such as
adding higher levels of artificial diffusion, using different high-order fluxes, and others, but in our experience, there is no
single method which completely eliminates it. On the other hand the results from the Godunov method show little sign
of this phenomenon and the AMR meshes conform closely to the locations of rapid change, such as shocks and contacts.
The plots of estimated error also show increased noise in the FCT solution. It is worth noting that the remnant of the initial
condition on the c� characteristic has flagged refinement for the FCT solution whereas this feature has been smoothed by the
Godunov method.

Fig. 12 shows line plots of the approximations along the lines x2 ¼ 0 with x1 2 ½0:5;2:0� and x1 ¼ 1 with x2 2 ½0;2� which
gives an indication of convergence as the mesh is refined. From these plots one can again see the trend that FCT approxima-
tions contain more noise as compared to the Godunov approximations which generally vary more smoothly. Table 6 shows
estimated L1 norm self convergence errors and convergence rates. These errors and rates were computed using the finest
three resolutions following the approach presented in [42] and as outlined in Section 4.4. An advantage to this method is
that it naturally provides an estimate for the exact solution ue in Eq. (24). This result can be used to estimate solution errors
as was done to obtain the error estimates shown in Fig. 11.
Overlapping grid structure (left) and color contour of the initial density (right). The overlapping grid structure is used to capture geometry and
nal adaptive grids will be dynamically added to locally increase resolution. Note that we only require one layer of interpolation points at grid overlap
ssed in Section 3.1. The initial density shows a M ¼ 2:0 shock in air (ideal gas with c ¼ 1:4) moving from left to right.



Fig. 11. AMR grid structure (left), numerical Schlieren images (center) and estimated L1 error in density (right) for the FCT method (top) and Godunov’s
method (bottom) for the finest resolution simulation at t ¼ 1:4.

Fig. 10. Color contours of density for the finest resolution using FCT (top) and Godunov’s method (bottom) at t ¼ 0:6 (left), t ¼ 1:0 (middle), and t ¼ 1:4
(right).
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Fig. 12. Solution convergence along the lines x2 ¼ 0 (top) and x1 ¼ 1 (bottom) for the FCT method (left) and the Godunov method (right) on the shock–
cylinder problem. Shown here is the density with the colors indicating numerical resolution. Maroon represents the solution with no AMR while cyan, red,
The results in Table 6 show that the errors and convergence rates are similar for the FCT and Godunov methods. It is inter-
esting to see that convergence results for all quantities, including the velocities and pressure which do not jump through
contact waves, show sub-linear convergence. The probable cause for this behavior is the complex interactions of shocks, con-
tacts and rarefactions as well as the instabilities in the wake region of the flow. Indications of this are given by the error esti-
mates of Fig. 11 where the wake region is shown to have large errors over a substantial area.

4.6. Irregular mach reflection of a strong shock

The final test considered in this paper is that of irregular Mach reflection of a strong shock at an inclined ramp. This classic
example has been investigated by many authors [28,44,23] as well as demonstrated experimentally [45]. In this problem, a
Mach 10 shock impacts a ramp which is inclined 30� from the normal shock propagation direction. The result is a complex
interaction and results in an irregular Mach reflection. Numerically, this flow can cause a carbuncle like instability [46,47] for
some numerical methods if proper care is not taken.

Traditionally this test problem has been solved by inclining the incident shock to a Cartesian grid and using special
boundary conditions to simulate the transition region at the start of the ramp. For the simulations presented in this paper,
the geometry of a 30� ramp is realized using overlapping grids and then a Mach 10 shock is impacted onto this ramp. The
overlapping grid we use consists of a thin boundary fitted mesh to model the ramp in union with a background Cartesian
mesh for the remaining bulk of the computational domain. The background Cartesian mesh is defined by the rectangle
Rð½�0:5;3:0� 	 ½0;1:7�;420;340Þ. Although the boundary fitted mesh is not described by a simple mathematical expression,
a verbal description will suffice for our purposes. The physical boundary of this ramp grid is defined as a curve that smoothly
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transitions from the line x2 ¼ 0, to the line x2 ¼ x1=
ffiffiffi
3
p

, and finally to the line x2 ¼ 1:4438. These transitions are defined in
terms of integrals of hyperbolic tangent functions and are therefore smooth [48]. The ramp grid is extruded along normals
into the domain and the mesh spacing is chosen to approximately match that of the background Cartesian grid. The resulting
overlapping grid is shown in Fig. 13 where both the full geometry and a zoom near the ramp initiation at the origin are
shown. At the scale of the full geometry it is difficult to see the rounding of the corners, but the close up image makes this
rounding clear. A rounded corner will have some effect on the solution as it compares to a solution obtained using a perfectly
sharp corner. Such effects have been studied for example in [49,16] and found to be of little consequence when the radius of
curvature is small as compared to the flow features of interest (as is the case here).

Initial conditions for a Mach-10 planar shock in air ðc ¼ 1:4Þ are ðq;u1;u2; pÞL ¼ ð8:0;8:25;0:0;116:5Þ and ðq; u1; u2; pÞR ¼
ð1:4;0:0;0:0;1:0Þ. The initial shock is located at x1 ¼ �0:25 (for reference the leftmost boundary is x1 ¼ �0:5 and the ramp
Fig. 13. Basic overlapping grid used for the simulation of irregular Mach reflection on an inclined ramp. The boundary fitted ramp grid is seen in green and
the background Cartesian mesh in blue. The full geometry (left) shows what looks like sharp transitions to represent the ramp corners, but the zoom near
the origin (right) shows that these corners are very slightly rounded. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 14. Simulation results at t ¼ 0:2 for the Godunov method (left) and FCT (right) with 3 levels of factor 4 refinement. Shown are the AMR mesh (top), a
numerical Schlieren image (middle), and pressure (bottom). Notice the increase in noise produced by the FCT method as evidenced by the larger region
flagged for AMR refinement. Also notice the lower pressure achieved by the FCT method within the main vortex.
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incline begins at x1 ¼ 0) and time integration is performed to t ¼ 0:2. Boundary conditions are set using a slip wall condition
along the ramp boundary, inflow conditions along the left boundary and outflow conditions elsewhere. For these simula-
tions, the base mesh has roughly equal mesh spacing throughout the domain with h � 1

120. Simulations are performed at four
resolutions starting with only the base mesh and then progressing through to use one additional level of factor four refine-
ment, two additional levels of factor three refinement, and finally two additional levels of factor four refinement.

Fig. 14 shows the approximations obtained using the FCT and Godunov methods at the finest resolution with approximate
mesh spacing h � 5:21	 10�4. At this scale there are some apparent differences that merit mention. First notice the in-
Fig. 15. Zoom of the numerical Schlieren images near the triple point and main vortex for Godunov (left) and FCT (right). Resolution increases from top to
bottom with approximate grid spacings h � 1=120;1=480;1=1080, and 1=1920, respectively.
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creased noise production by the FCT method as shown by the increased proportion of the domain flagged for AMR refine-
ment. Also both simulations retain remnants of the initial condition along the c� characteristic and contact path. These rem-
nants are covered with fine AMR meshes, although the refinement for the FCT algorithm covers a larger region. Finally it is
seen that the minimum pressure inside the main vortex is lower for the FCT simulation than for Godunov.

Fig. 15 shows close-up numerical Schlieren images near the main vortex structure at the four different mesh resolutions.
For both simulation techniques, the main vortex is poorly represented at low resolutions but with increasing mesh resolu-
tion the main features begin to develop. The roll-ups along the slip lines become pronounced for both methods with the
Godunov solution showing slightly more detailed structure. The final two solutions show interesting differences in the
development of the main vortex. For the Godunov method it remains as a coherent single vortical structure, while for the
FCT method it begins to break down and show more complex behavior. Comparing this behavior with what is seen in
[23] shows that the Godunov methods (for [23] the PPM method) tend to maintain a coherent single structure, while the
other methods (the hybrid WENO method in [23] and FCT here) produce a vortex which begins to loose coherence at very
high-resolution. This type of behavior calls into question the limit processes of the various schemes and whether the various
methods are in fact approaching the same vanishing viscosity solution. This is an interesting question and will be the subject
of future work. As a further comparison of the methods, Fig. 16 compares the peak vorticity and minimum scaled temper-
ature, defined as p=q, for the two methods as a function of grid resolution. For both schemes the minimum temperature de-
creases and the maximum vorticity increases as the mesh is refined. The FCT results show a lower temperature and smaller
vorticity as compared to the Godunov results. A self convergence study is performed as was done in Section 4.5 using a
weighted L1 norm. The finest three resolutions are used for this comparison and results presented in Table 7.

Here it is seen that the performance of the two methods is similar. The L1 norm convergence rates are somewhat low but
this is attributed to the large variations in the solution and unstable vortical flows which arise at the slip line which is evi-
dent in Fig. 15.

5. Qualitative comments about timings

As previously mentioned, one aim of this study is to provide a reasonably detailed comparison of an FCT method with a
high-resolution Godunov method. In this assessment, a quantitative comparison of these techniques has included conver-
gence results as well as details concerning the relative accuracy of the methods on a set of test problems. One critical aspect
that has been neglected until this point is a discussion of the computational expense. This question has not been addressed
for the very specific reason that the Godunov code used here is mature and has been through years of optimization. The FCT
code however, has been recently developed for the purposes of this study and has not been through the same optimization
process. However, we do believe that some qualitative remarks about issues related to efficiency are in order.
Table 7
Computed errors and convergence rates for the FCT (F) and Godunov (G) schemes on the problem of irregular Mach reflection. Here we use a weighted L1 norm.

m eqðmÞ F eqðmÞ G eu1 ðmÞ F eu1 ðmÞ G eu2 ðmÞ F eu2 ðmÞ G epðmÞ F epðmÞ G

4 5.67e�2 6.29e�2 3.15e�2 3.45e�2 3.32e�2 3.89e�2 1.06e�0 1.09e�0
9 3.71e�2 4.25e�2 1.74e�2 2.32e�2 2.05e�2 2.84e�2 6.85e�1 6.81e�1
16 2.75e�2 3.22e�2 1.14e�2 1.76e�1 1.46e�2 2.28e�2 5.04e�1 4.87e�1
j 0.52 0.48 0.73 0.49 0.59 .39 0.54 0.58

0 2 4 6 8
x 10−3

100

200

300

400

500

600

700

mesh spacing 

vo
rti

ci
ty

0 2 4 6 8
x 10−3

14

15

16

17

18

19

20

21

mesh spacing 

te
m

pe
ra

tu
re

Fig. 16. Maximum vorticity within the main vortex as a function of mesh spacing (left) and minimum scaled temperature (right), defined as p=q, as a
function of mesh spacing. Godunov results are given in red and FCT results in blue. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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As implemented, the FCT method is approximately 10 times slower per time step than the Godunov method. Some part of
this comes from a non-optimal implementation, but a much larger part is due to the FCT algorithm being more costly than
the Godunov method. One major factor is that the FCT method requires approximately 60 characteristic transformations per
cell per time step (see for example Eq. (10)) compared to only about 8 for the Godunov method. Computational expense is
also increased by the larger number of refinement grids that result from the high frequency noise present in FCT solutions.
For example, the finest FCT resolution of irregular Mach reflection in Section 4.6 has 1.8 times as many grid cells as the Godu-
nov method at the final time. Assuming the majority of the cells reside on the finest level of refinement, a relatively accurate
assumption here, this results in roughly 1.8 times the computational cost. Furthermore, the FCT method generally runs at a
lower CFL number than the Godunov method due to the monotonicity limit and the additional stability constraint from the
fourth-order dissipation. Taking the ramp computations as an example, the end result was approximately a factor of 2.8
reduction in time step size for FCT as compared to Godunov. Taken together, this indicates that the FCT method is potentially
quite costly when compared to Godunov. For every case presented here, a simulation at substantially higher resolution, and
commensurately smaller error, can be obtained by the Godunov method for a given amount of wall clock time. Using the
ramp computation again as an example, the finest FCT approximations required roughly 30 times more wall clock time than
did the Godunov approximations. This means that for the computational cost of the Godunov simulation with m ¼ 16, the
FCT method could only be run with m � 5 (see Table 7 and Fig. 15). However, as noted earlier, in the case where no Riemann
based strategies are viable (such as for a lack of knowledge of the detailed eigen-structure of the system or for possible
robustness reasons) an FCT approach can provide a viable path forward. In such cases, it is irrelevant how much faster other
techniques might have been because they are not available or not practical.

6. Conclusions

This paper has outlined the development and assessment of a high-resolution FCT algorithm for the Euler equations on
structured overlapping grids. The implementation of the FCT method for overlapping grids was based on the Overture frame-
work and included modifications and extensions to the classical FCT algorithm. These extensions included the modifications
required for the discretization on curvilinear grids as well as the inclusion of a Jameson style fourth-order artificial viscosity
to remove the high frequency noise produced by FCT. Improvements were made to the FCT algorithm to eliminate entropy
violating shocks that can occur at sonic points in rarefaction waves. Difficulties occurring in strong rarefaction waves, where
a near vacuum state is produced when the gas separates at velocities greater than the sound speed, were also addressed.

We have evaluated this new FCT method on a series of benchmark high-speed flow problems and compared the results to
those obtained using a high-resolution Godunov method. This investigation confirmed the expected convergence character
for isolated contact and shock waves. In two dimensions, the overlapping grid capabilities were used to study the refraction
of a planar shock with a rigid cylinder and irregular Mach reflection of a strong shock on an inclined ramp. For problems with
known exact solutions actual errors and estimated convergence rates were determined. For problems with no known solu-
tions, estimated errors and convergence rates were calculated based on a self convergence assumption. Overall the results
obtained by the FCT and Godunov methods were found to be very similar. The FCT solutions tended to have a somewhat
higher resolving capability but also to contain more numerical noise. It was recognized that our implementation of the
FCT method was quite costly in comparison to the Godunov method. This is due to the large number of characteristic trans-
formations, the smaller time step required, and the apparent difficulty in removing high frequency noise which tends to flag
cells for refinement by the AMR algorithm. In the end, the comparisons suggest that the FCT method may be a viable option
for cases where Riemann solutions are not possible, or for unstructured meshes where a Godunov type method may not be
easily implemented.
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